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A Variational Analysis of Dielectric
Waveguides by the Conformal Mapping
Technique

RUEY-BEEI WU anp CHUN HSIUNG CHEN

Abstract —The variational formulation together with the finite-element
method is a well-established technique for the solution of a dielectric
waveguide. One commen difficulty is the handling of the problem with the
infinite extent of the electromagnetic fields in the transverse plane. In this
paper, the conformal mapping technique is employed to improve the
modeling of the region exterior to the guides; hence it may give more
accurate results for the modes near the cutoff region. Also included are the
numerical results for rectangular, strip, and channel waveguides to demon-
strate the applications of the proposed technique.

I. INTRODUCTION

N MILLIMETER- AND optical-wave spectra, various

applications of dielectric waveguides have been sug-
gested (for instance, as a directional coupler [1], a phase
shifter [2], [3], and a channel-dropping filter [4]). In the
design of these structures, it is important to calculate the
propagation constants and the field patterns of the wave-
guide. Some guiding structures are so important as to
warrant specialized methods adapted to their needs. Typi-
cal examples include microstriplines, optical fibers, and
rectangular waveguides. For other guides with complicated
geometry and complex media, the finite-element method is
probably the most flexible and versatile one for analysis.

In general, the variational equations for dielectric wave-
guides and close-type waveguides [5] are essentially the
same in mathematics. Since the fields in dielectric wave-
guides extend to infinity, the integration in the variational
equation must cover the whole transverse plane. The varia-
tional methods employ exterior region basis functions with
exponentially decaying parameters which need to be opti-
mized [6]-[8]. The variational reaction theory obtains a
variational equation with integration in the finite region by
properly absorbing the radiation condition and the con-
tinuity conditions, and, hence, needs some mode searching
scheme [9].

On the other hand, the finite-element methods employ
local basis functions and take care of the modeling of the
infinite transverse extent of the fields. The most common
solution is a simple truncation of the exterior fields by
imposing metallic walls at a large distance from the guide
[10], [11]. Another and perhaps better solution is the use of
an infinite element with an empirical decaying parameter
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prescribed [12], [13] or with some special basis functions
which need to be considered separately [14].

In this paper, a new and rigorous approach is proposed
by conformally mapping the whole transverse plane to a
suitable finite region. The governing variational equation
then remains almost invariant and can thus be solved
directly by the conventional finite-element method [15],
[16]. Since the fields exterior to the guide are, in general,
more insignificant than the interior ones, this proposed
method causes no difficulty when the exterior region is
conformally condensed. Therefore, the problem may be
more efficiently tackled in the new transformed finite
region. ‘

II. METHOD OF ANALYSIS

A. Variational Formulation

Consider a uniform dielectric waveguide of arbitrary
cross section and with an inhomogeneous medium (Fig, 1).
Let the relative permittivity and permeability be ¢,(x, y)
and u,(x, y), respectively. It is well known that the propa-
gating modes of a dielectric waveguide are generally hy-
brid. Both axial components E, and H, are required to
characterize all the field components. Thus, the governing
variational equation for this structure can be written as [5]

0I=0
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“where the integration region © should cover the whole

transverse plane. Here, k, is the wavenumber in {ree space,
1, is the characteristic impedance of free space, and n? is
the effective dielectric constant which relates to the propa-
gation constant 8 by

)

n,=B/kg.

B. Conformal Mapping

The conformal mapping technique is a useful tool in the
analysis of static field problems. Its application to the
time-harmonic waveguide problem will be presented in this
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Fig. 1. Geometry of an arbitrarily-shaped inhomogeneous dielectric

waveguide which is uniform in the z-direction.

section. Let the relation between the original coordinate
w = (x, y) and the new coordinate w’ = (x’, y’) be defined
by an analytic complex function

w'=f(w). 3)
By this conformal transformation (3), the variational
equation (1) in the new coordinate system thus becomes

I=/Q/dx'dy’
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where the Jacobian |J| is related to the complex function
by
2

dw

" )

Equations (4) and (1) mathematically have the same form
except the last terma. This simplicity may be attributed to
the angular invariance of the conformal mapping.

Let us consider the guiding structures which are symmet-
ric with respect to the y—z plane (Fig. 2). This y—z plane
can be regarded as an electric or a magnetic wall when odd
or even modes are considered. Therefore, it is sufficient to
solve the problem in the x > 0 plane. It is well known that
this half plane can be conformally mapped into a unit
circle by the linear fractional transformation [17]

|/} =

w!=(x",y")

w~1
w=f(w)=——7. (6)
The Jacobian of the transformation is thus
2 I 4
’Jl b 2 = 2 * (7)
(1-w’) (1) + )

Though the Jacobian is singular at w’ =1, where |w| tends
to infinity, the integrand in the last term of (4) still remains
finite and regular since the fields E, and H, for the guided
modes monotonically vanish there. For leaky modes where
the exterior fields are oscillatory, it is difficult to choose
proper basis functions for the elements containing the
point w’ =1 since the integrand now is finite but irregular
there. However, the method would still give reasonable
results if more divisions are employed and the exterior
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Fig. 2. Three dielectric waveguides which are symmetric with respect to
the y—z plane: (a) image guide, (b) strip gude, and (c) channel gnide.

fields decay very fast so that the error caused by this
irregularity is negligible.

C. Finite- Element Method

Since the integration range £’ in (4) is finite, it can be
solved by the conventional finite-element method. We first
discretize the entire region ' into a finite number of
subregions, called elements. As an example, let us consider
the rectangular image guide which also possesses another
symmetry with respect to the x -z plane (Fig. 2(a)). Fig. 3
shows typical elements in both the original and the new
coordinate systems. In each element, the field ¢, which
denotes E, or H,, is expressed as

(8)

where ¢, is the nodal unknown and B, is a suitable shape
function {15]. Also the global coordinate (x’, y”) of a node
is isoparametrically related to the local coordinate (£, 1) by
[15]

o(x',y") =2 ¢:B,(£,m)

B/(£m). ©)
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Then, we have to calculate the integrals contributed from
each element. To take the inhomogeneity and the Jacobian
into consideration, we use the Gaussian quadratic formula
{15] for integration. By assembling the element integrals
and applying the Ritz procedure, we finally obtain the
matrix equation

(10)

where [®@] is the column vector corresponding to the nodal
unknowns, while [4] and [ B] are known matrices which
are of the banded type. Though the matrix [4] is not
positive-definite, (10) can still be effectively solved by
searching for k, such that the determinant of ([ A]— k3[ B])
vanishes [16].
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Fig. 3. Typical subdivision elements for image guide in (a) original and
(b) transformed coordinate systems. Here, M, and M, are the number
of elements in the x- and y-directions, respectively. The dashed line
represents the actual boundary of image guide.

IIL.

In this section, several guiding structures will be analyzed
using the method described. We first consider the rectangu-
lar image guide as shown in Fig. 2(a). For the modes with
E, symmetric (and H, anti-symmetric) to the y—z plane,
their dispersion curves are shown in Fig. 4. As compared
with Goell’s results [18], the computed propagation con-
stants of the dominant mode Ej; are accurate even with
M, X M,=3x3=9 elements. However, more subdivision
elements are required to give accurate results for the higher
modes. Also shown in the figure are the constants of the
spurious, nonphysical modes. It is interesting to note that,
with more subdivision elements, the spurious modes are
fewer in a prescribed range of B (e.g., 0 <B<4) and,
therefore, can be eliminated more easily.

The other modes with E, anti-symmetric (and H, sym-
metric) to the y-z plane are obtained by imposing an
electric wall over the y—z plane. The dispersion curves for
the first six guided modes of the image guide are shown in
Fig. 5. Compared with the Marcatili’s approximation [19],
the present method can give more accurate results for the
modes near cutoff and for the E% and Ej; modes, which
are nearly degenerate. The cross marks in the figure are the
results obtained by the simple truncation method with the

NUMERICAL RESULTS
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Fig. 4. Computed results for image guide (Fig. 2(a)) with a /b =1, and
€, = 2.25. Here, + and O represent the results for M, = M, =6 and
M, = M, =3, respectively. The solid curves are Goell's resulis.
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Fig. 5. Dispersion curves for first six guided modes of image guide with
a/b=1, ¢ =225 and M, = M, =6. The dot and cross marks repre-
sent the finite-element results with conformal mapping technique and
simple truncation method, respectively, while the solid and dashed
curves are Goell’s and Marcatili’s results, respectively.

artificial electric walls imposed at a distance twice the
dimension of the guide. It is shown that the present method
gives a significant improvement for the modes whose fields
are not well confined by the guide boundary.

This method is also applicable to the slab-coupled wave-
guide such as the strip guide shown in Fig. 2(b). Fig. 6
shows the results for the three guided modes of this struc-
ture. Here, the solid curve for the dominant mode is almost
identical to the one obtained by McLevige et al. [20], but a
little different from the one obtained by Ikeuchi et al. [21].
In the latter literature, the finite-element method has also
been adopted but using an iterative algorithm to handle the
unbounded exterior region.

We next consider the channel guide (Fig. 2(c)) where
only one symmetry with respect to the y—z plane exists.
The conformal mapping defined by (6) can also be applied
directly, but more subdivision elements in the y-direction
are required. The results for the first eight modes are
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Fig. 6. Dispersion curves for three guided modes of strip guide (Fig.
2(b)) with 2a = 0.65 cm, d; = 0.5 cm, d, = 0.32 cm, €, = 2.62, ¢, = 2.55,
and M, =6, M,=17.
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Fig. 7. Dispersion curves for first eight guided modes of channel guide
(Fig. 2(0)) with a/b =2, €, =256, ¢, =225, M, =6, and M, =9.

shown in Fig. 7. They show good agreement with the
curves obtained by Marcatili’s approximate formula. As
compared with the image guide and strip guide, the chan-
nel guide has its lowest mode polarized in the x-direction
instead.

Finally, the present method is applied to analyze the
channel guide consisting of an inhomogeneous substrate.
The refractive index in the substrate is assumed to be

o (nc_ns) I/‘Vx_*_x
n(x,y)—ns+—————————2'erf(%/Dx)-[erf( D, )

+erf( P X )}-exp( - -ijiz) (11)

* y

where “erf” means the error function. Fig. 8 shows the
profile of the index change for the guide with parameters:
n.=16, n =15 W,=25mm, D,=225 mm, and D, =
1.82 mm. Here one still has the symmetry with respect to
the y—z plane. Fig. 9 shows the computed dispersion
curves for the first six guided modes.
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Fig. 9. Results for first six guided modes of inhomogencous channel
guide.

IV. CONCLUSIONS

In this paper, the vector variational finite-element method
in conjunction with the conformal mapping technique has
been established for analyzing problems which extend to
infinity. The method has been applied to handle a wide
variety of dielectric waveguide structures which are sym-
metric with respect to the vertical center plane. One major
implication of this work is that more accurate results for
the guided mode near cutoff can be obtained due to the
proper treatment of the exterior field.

The efficiency of this method relies much of what con-
formal mapping function is adopted. In particular, by
choosing a suitable conformal mapping, some complicated
problems can be solved very efficiently. The related works,
such as the study of a dielectric waveguide coupler, are in
progress and will be reported in the future.
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