
IEEE TRANSACTIONS ON MICROWAVE THEORY AND T5CMQ~S, VOL. MIT-33, NO. 8, AUGUST 1985

~ Variational Analysis of Dielectric
Waveguides by the Confo~rmal Mapping

Technique

RUEY-BEEI WU AND CHUN HSIUING CHEN

681

zfbsouet —The variational formulation together with the finite-element

method is a well-established technique for the solution of a dielectric

waveguide. One common difficulty is the handling of the problem with the

infinite extent of the electromagnetic fields in the transverse plane. In this

paper, the conformal mapping tecfudque is employed to improve the

modeting of the region exterior to the guides; hence it may givp more

accurate results for the modes near the cutoff region. Also included are the

numencaf results for rectangular, strip, and channel wavegnides to demon-

strate the applications of the proposed teehniqne.

I. INTRODUCTION

N MILLIMETER- AND optical-wave spectra, variousI applications of dielectric waveguides have been sug-

gested (for instance, as a directional coupler [1], a phase

shifter [2], [3], and a channel-dropping filter [4]). In the

design of these structures, it is important to calculate the

propagation constants and the field patterns of the wave-

guide. Some guiding structures are so important as to

warrant specialized methods adapted to their needs. Typi-

cal examples include rnicrostriplines, optical fibers, and

rectangular waveguides. For other guides with complicated

geometry and complex media, the finite-element method is

probably the most flexible and versatile one for analysis.

In general, the variational equations for dielectric wave-

guides and close-type waveguides [5] are essentially the

same in mathematics. Since the fields in dielectric wave-

guides extend to infinity, the integration in the variational

equation must cover the whole transverse plane. The varia-

tional methods employ exterior region basis functions with

exponentially decaying parameters which need to be opti-

mized [6]–[8]. The variational reaction theory obtains a

variational equation with integration in the finite region by

properly absorbing the radiation condition and the con-

tinuity conditions, and, hence, needs some mode searching

scheme [9].

On the other hand, the finite-element methods employ

local basis functions and take care of the modeling of the

infinite transverse extent of the fields. The most common

solution is a simple truncation of the exterior fields by

imposing metallic walls at a large distance from the guide

[10], [11]. Another and perhaps better solution is the use of

an infinite element with an empirical decaying parameter
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prescribed [12], [13] or with some special basis functions

which need to be considered separately [14].

In this paper, a new and rigorous approach is proposed

by conformably mapping the whole transverse plane to a

suitable finite region. The governing variational equation

then remains almost invariant and can thus be solved

directly by the conventional finite-element method [15],

[16]. Since the fields exterior to the guide are, in general,

more insignificant than the interior ones, this proposed

method causes no difficulty when the exterior region is

conformably condensed. Therefore, the problem may be

more efficiently tackled in the new trmsformed finite

region.
!

II. METHOD OF ANALYSIS

A. Variational Formulation

Consider a uniform dielectric waveguide of arbitrary

cross section and with an inhomogeneous medium (Fig. 1).

Let the relaltive permittivity apd permeability be c,(x, y)

and P,(x, y), respectively. It is well known that the propa-

gating modes of a dielectric waveguide are generally hy-

brid. Both aodal components Ez and H= are required to

characterize all the field components. Thus, the governing

variational equation for this structure can be written as [5]

61=0

+ 2n,~02. (V,EZ X VtHz ))

- ~:&-wY(wz12 +1-LT:lH.12) (1)

where the integration region 0 should cover the whole

transverse plane. Here, kO is the wavenumber in free space,

qo is the cha~racteristic impedance of free space) ~d n ~ is
the effective dielectric constant which relates to the propa-

gation constant /3 by

ne=fl/ko. (2)

B. Conforrnal Mapping

The conformal mapping technique is a useful tool in the

analysis of static field problems. Its application to the

time-harmonic waveguide problem will be presented in this
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Fig. 1, Geometry of an arbitrarily-shaped inhomogeneous dielectric

waveguide which is uniform in the z-direction.

section. Let the relation between the original coordinate

w = (x, y) and the new coordinate w’= (x’, y’) be defined

by an analytic complex function

W’=f(w). (3)

By this conformal transformation (3), the variational

equation (1) in the new coordinate system thus becomes

-t-%2eqo+7&zxv;HJ)

– k:
./J

dx’dy’1Jl(erlE,12 +PrT:lHz12) (4)
w

where the Jacobian 1.?I is related to the complex function

by

2

I.q= *

dw’ W’=(x’, y’)”

(5)

Equations (4] and (1.) mathematically have the same form

except the last term. This simplicity may be attributed to

the angular invariance of the conformal mapping.

Let us consider the guiding structures which are symmet-

ric with respect to the y – z plane (Fig. 2). This y – z plane

can be regarded as an ekxtric or a magnetic wall when odd

or even modes are considered. Therefore, it is sufficient to

solve the problem in the x >0 plane. It is well known that

this half plane can be conformably mapped into a unit

circle by the linear fractional transformation [17]

W’+(W)=%. (6)

The Jacobian of the transformation is thus

2 12

‘J’ = & w’)’ = ((l- xt;z+ y~’)’ “
(’7)

“1’hou@ the Jacobian is singular at w’= 1, where IWI tends

to infinity, the i~tegrand in the last term of (4) still remains

finite and regular since the fields E, and Hz for the guided

modes monotonically vanish there. For leaky modes where

the exterior fields are oscillatory, it is difficult to choose
proper basis functions for the elements containing the

point w’= 1 since the integrand now is finite but irregular

there. However, the method would still give reasonable

results if more divisions are employed and the exterior

&&;
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(a) (b)

--H=IP
Fig. 2. Three dielectric waveguides which are symmetric with respect to

the y – z plane: (a) image guide, (b) strip gurde, and (c) channel guide.

fields decay very fast so that the error caused by this

irregularity is negligible.

C. Finite-Element Method

Since the integration range W in (4) is finite, it can be

solved by the conventional finite-element method. We first

discretize the entire region !2’ into a finite number of

subregions, called elements. As an example, let us consider

the rectangular image guide which also possesses another

symmetry with respect to the x – z plane (Fig. 2(a)). Fig. 3

shows typical elements in both the original and the new

coordinate systems. In each element, the field +, which

denotes E, or Hz, is expressed as

+(x’, y’) = ~+iB1(g,~) (8)

where +, is the nodal unknown and B, is a suitable shape

function [15]. Also the global coordinate (x’, y’) of a node

is isoparametrically related to the local coordinate (~, q) by

[15]

(9)

Then, we have to calculate the integrals contributed from

each element. To take the inhomogeneity and the Jacobian

into consideration, we use the Gaussian quadratic formula
[15] for integration. By assembling the element integrals

and applying the Ritz procedure, we finally obtain the

matrix equation

[A][@]=k;[B][@] (lo)

where [@] is the column vector corresponding to the nodal

unknowns, while [A] and [B] are known matrices which

are of the banded type. Though the matrix [A] is not

positive-definite, (10) can still be effectively solved by

searching for k. such that the determinant of ([A] – k~[ B])

vanishes [16].
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Fig. 4. Computed results for image guide (Fig. 2(a)) with a/b= 1,and

c1 = 2.25. Here, “ and ❑ represent the results for &ty = MY= 6 and

MX = MY = 3, respectively. The solid curves are Goell’s results.

(b)

Fig. 3. Typical subdivision elements for image guide in (a) originaf and
(b) transformed coordinate systems. Here, MX and XV are the number
of elements in the x- and y-directions, respectively. The dashed line
represents the actual boundary of image guide.
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III. NUhfERICAL RESULTS

In this section, several guiding structures will be analyzed

using the method described. We first consider the rectangu-

lar image guide as shown in Fig. 2(a). For the modes with

E, symmetric (and H= anti-symmetric) to the y – z plane,

their dispersion curves are shown in Fig, 4. As compared

with Goell’s results [18], the computed propagation con-

stants of the dominant mode Efl are accurate even with

MX x MY= 3 x 3 = 9 elements. However, more subdivision

elements are required to give accurate results for the higher

modes. Also shown in the figure are the constants of the

spurious, nonphysical modes. It is interesting to note that,

with more subdivision elements, the spurious modes are

fewer in a prescribed range of B (e.g., 0< B <4) and,

therefore, can be eliminated more easily.

The other modes with E= anti-symmetric (and Hz sym-

metric) to the y – z plane are obtained by imposing an

electric wall over the y – z plane. The dispersion curves for
the first six guided modes of the image guide are shown in

Fig. 5. Compared with the Marcatili’s approximation [19],

the present method can give more accurate results for the

modes near cutoff and for the E:2 and E]l modes, which

are nearly degenerate. The cross marks in the figure are the

results obtained by the simple truncation method with the

Fig. 5. Dispersion curves for first six guided modes of image guide with

a/b =1, c1 = 2.25, and MX = MY = 6. The dot and cross marks repre-

sent the finite-elernent results with conformaf mapping technique and

simple trnnc~~tion method, respectively, while the solid and dashed

curves are Goell’s and Marcatili’s results, respectively.

artificial elelctric walls imposed at a distance twice the

dimension of the guide. It is shown that the present method

gives a significant improvement for the modes whose fields

are not well confined by the guide boundary.

This method is also applicable to the slab-coupled wave.

guide such as the strip guide shown in Fig. 2(b). Fig. 6

shows the results for the three guided modes of this struc-

ture. Here, the solid curve for the dominant mode is almost

identical to the one obtained by McLevige et al. [20], but a

little different from the one obtained by Ikeuchi et al. ~1].

In the latter literature, the finite-element method has also

been adopted but using an iterative algorithm to handle the
unbounded exterior region.

We next consider the channel guide (Fig. 2(c)) where

only one symmetry with respect to the y – z plane exists.

The conformml mapping defined by (6) can also be applied

directly, but more subdivision elements in the y-direction

are required. The results for the first eight modes are
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Fig. 6. Dispersion curves for three guided modes of strip guide (Fig.
2(b)) with 2a= 0.65cm, dl = 0.5cm, d2 = 0.32 cm, c1 = 2.62, (z= 2.55,
and MX=6, M, =7.
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Fig. 7. Dispersion curves for first eight guided modes of channel goide
(Fig. 2(c)) with a/b =2, cd= 2.56, c,= 2.25, Mx = 6, and MY = 9.

shown in Fig. 7. They show good agreement with the

curves obtained by Marcatili’s approximate formula. As

compared with the image guide and strip guide, the chan-

nel guide has its lowest mode polarized in the x-direction

instead.

Finally, the present method is applied to analyze the

channel guide consisting of an inhomogeneous substrate.

The refractive index in the substrate is assumed to be

(l’IC-n,)
Fz(x, y)=lz,+

2. erf( WX/DX ) “[erf(%)

+erf(~)]exp(-~) (11,

where “ erf” means the error function. Fig. t? shows the

profile of the index change for the guide with parameters:

nC=l.6, n, =1.5, WX= 2.5 mm, DX= 2.25 mm, and DY=

1.82 mm. Here one still has the symmetry with respect to

the y – z plane. Fig. 9 shows the computed dispersion

curves for the first six guided modes.

no=l. f3

/ nc=l.6

1 ---4-----
-4 —— ----

IY (mm)
n.=1.5

Fig. 8. Profile of index change ( A n ) for inhomogeneous channel guide.
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Fig. 9. Results for first six guided modes of inhomogeneous channel

guide.

IV. CONCLUSIONS

In this paper, the vector variational finite-element method

in con.. unction with the conformal mapping technique has

been established for analyzing problems which extend to

infinity. The method has been applied to handle a wide

variety of dielectric waveguide structures which are sym-

metric with respect to the vertical center plane. C)ne major

implication of this work is that more accurate results for
the guided mode near cutoff can be obtained due to the

proper treatment of the exterior field.

The efficiency of this method relies much of what con-

formal mapping function is adopted. In particular, by

choosing a suitable conformal mapping, some complicated

problems can be solved very efficiently. The related works,

such as the study of a dielectric waveguide coupler, are in

progress and will be reported in the future.
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